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Modal Theory of Spatially Periodic Media
RUEY-SHI CHU, MEMBER, IEEE, AND

Abstract—The modal theory is developed for a slab periodic medium
bounded by different media on both sides. Dispersion analysis is carried

out for the various cases. Wave amplitudes are determined from boundary

conditions for electromagnetic field components. The results are com-

pared and reduckd to the well-known theories under simplified conditions.

Analysis and calculations are aimed at applications to grating couplers,

electrooptical modulators, and distributed feedback systems in integrated

optics.

I. INTRODUCTION

I

N INTEGRATED OPTICS, a spatially periodic medium

is useful in modeling many different situations, whether

it be a grating coupler, a distributed feedback laser system,

or an electrooptical modulator with periodically placed

electrodes. A rigorous approach to the guided wave theory

of light diffraction by a periodic slab medium was formulated

and solved by Chu and Tarnir [1]. They considered a plane

wave incident at the Bragg angle upon a periodically

modulated slab medium bounded on both sides by the

same media. The direction of periodicity is assumed to be

parallel to the boundary, and the effective modulation index

of the periodic medium is assumed to be much smaller than

unity.

Peng et al. [2] considered the problem of a slab periodic

medium bounded by two different media. The direction of

periodicity is also assumed to be parallel to the boundary

surfaces. With applications to holography, Bernstein and

Kermiscli [3] treated a slab periodic medium bounded by

the same media but with the direction of periodicity making

an angle with respect to the boundary surfaces. The problem

is also studied by Kogelnik [4] by using the coupled wave

theory.

In this paper we study the problem of a plane wave inci-

dent, either normal or at the Bragg angle, upon a period-

ically modulated slab medium bounded by different media

on its two sides. The direction of periodicity makes an angle

with respect to the interfaces (Fig. 1). The solutions are

expressed in terms of matrix formulation which can be

readily calculated with a computer. We discuss dispersion

characteristics by using load line concepts, Two special
cases, with the axis of modulation parallel and perpen-

dicular to the interfaces, are treated in detail. We then use

the model to compute diffracted field components for a

large range of effective modulation indices and to compare

with other theories.
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Fig, 1. Geometrical configuration.

II. WAVES IN SPATIALLY PERIODIC MEDIA

Consider a slab of spatially periodic medium of thickness

L (Fig. 1). The direction of striation is along i? and its axis

of modulation is along 2. The boundaries of the slab are

parallel to the Z axis at X = O and X = L, and their

normals are parallel to ~. The angle between the z axis and

the Z axis is y. The relationships between the two systems

of coordinates are

x= Xcosy–2siny

}z= Xsiny+Zcosy “
(1)

The slab occupies the space O < X s L and possesses

permittivity of the following form:

[ ( )1

2Z
&(z) = &~&o 1 — M Cos — z

d
(2)

where d is the periodicity of the modulation, M is the index

of modulation, and 82 is the relative permittivity in the

absence of the modulation (M = O). For X s O the

medium has a relative permittivity of El and for X > L

the medium has a relatiw pcirmittivity of 63.

Inside the periodic medium we use the coordinates

(x,y,z) and write the wave equation as

[v’ + oJ’#o&(z)]E2y = o. (3)

A modal solution to (3) can be written as

E2y(v)(x,z) = eiaxJ,(z). (4)

The mode function ~(z) satisfies the Mathieu differential

equation.

dz~,(z)

(
~ + (n/d)2 P, – 29 cos 2; z) @v(z) = O (5)
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with k. = o.),Ic = 2n/4

PV = (d/n) 2(e2k02 -- ~vz) (6)

q = 2(d/A)2M&2. (7)

The mode function ~v(z) can be written as

J,(z) = ~ C2y?,e’fi.(v” (8)
n

with

The index v represents the particular mode v. Substitution

of (8) in (5) yields

[(%2 -pl$’’’a~’,~’,-l
+ 4’-’-,+ J = O (10)

which can be written in the form of two continued fraction

relations

~r(v) ~1 ll_ll –...
— = -u - IL’:+, IL;+,

(11)
a~?l

a~=_ *I Al l.. 41 . . . .
a (v)

L;_, - IL;-, IL;-,

(12)
r

withr=n —v and

“= (5+2’)2 -’, V,r = 0,*1,+2,”””. (13)

The x-component wave numbers t, are found from p, while

p, is determined by inverting either(11) or (12) and equating

the result with the other. We obtain, for r = O,

(Lo’ =:,1 – <l
1 1L2V ‘jij’-”””)

( )

+ll_Al_&l_. ..o
L_lv lL_2v \L_3v

(14)

This represents a transcendental relationship among the
- @ By substituting (6) and (7) intoquantities g, p,, and ~0 .

(14), we establish the dispersion relaticm for quantities ko,

?,, and flO(v).

As the modulation index M becomes zero, LO’ = O and

(6) and (13) yield

‘r’’d’n)’+(w+‘v)’=‘2(k0d’n)2y
v = 0,*1,*:2,””’. (15)

V=+2

o

(a)

Fig. 2. Wave number plots in Fvd/n and @“)d/z space.

Consider the construction of the Brillouin Ico - B diagram

from the wave number plots in fvd/n and jo(’)d/n space for

~, = O, i.e., wave~propagate in the z direction. When k. is

small such that isz kod/z c 1, the /?od/n axis intersects the

dispersion curves at Ao,z!l,. ... which are shown in Figs.

2(a) and 3. For& kod/n x 1, the first stopband as shown

in Fig. 3 is constructed from Fig. 2(b) and (c). As 1 <

~G kodln <2, we move into another passlband in the
Brillouin diagram as seen from Fig. 2(d) and Fig. 3. Note

that

p“(’) = p_:o) = p“(”) – v ; (16)

and

F:’) = /?”(”) + (n – v): = 1$2,!. (17)

Thus the zeroth wave number PO(V) of the vth mode is

identical to the – vth wave number ~.,(0) of the zeroth

mode. As a result, all the v modes are identical.

We now estimate the bandwidth of the stop band for the

case of q << 1. From (6) and (7) we find

Equation (15) represents a set of circles centered at

~of’)d/z = O,+ 2, ~4, “ “ “
~- ‘ = &Akod/z)2 = 2q/M. (18)

with equal radius * 82 (k”d/n). It was shown that when flo(0)d/n = I and q <K 1 we have

When M is not zero but small, the dispersion curves do not
deviate very much from the case when M + O except near P xlyq. (19)

the intersection points of any of the two circles. At these The plus sign corresponds to the upper branch and the
intersection regimes the dispersion curves of the finite M minus sign corresponds to the lower branch. Tlhus we have,
case connect together without intersecting and produce for the upper branch,

stopbands where waves in the z direction become evanescent

[5]. ~; (ko4A = [1 - (M/2)]-’/2
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Fig. 3. Brillouin diagram constructecJfrom Fig. 2.

and for the lower branch,

& (k#n)LB = [1 + (ikf/2)]-’f2.

Forming the difference of the two equations, we find

A = & (kOd/n)u~ – ~; (kOd/rc)~~ % M/2.

Thus the bandwidth of the first stopband is proportional

to the modulation index M.

III. WAVE AMPLITUDES

A plane wave with the electric field in the j direction

(TE wave) is incident upon the slab at an angle f30 with

respect to the normal to the slab boundaries, i.e., the X axis.

The solution in region 1 can be written as

EIY(X,Z) = eikxx+ ‘kzz + ~ R.e- ‘kx”x+ ‘kznz (20)
n

HIZ(X,Z) = ~x eikxx+ikzz
cop

- ~ ~ Rne-ikx.X+ikznz (21)

where

kz = k sin 60 = J; kO sin 00 (22)

kx = k COS 60 = & k. COS 80 (23)

kz,, =kz+n~cosy (24)

kx. = (k’ – kzn2)’~2 = (elk,’ – kz.’)’[’ (25)

n = o,il, *2,”””, and kO = 21t/A = cD/c. Note that the

periodicity at the boundaries is d sec y rather than d. In

region 3 (X > L), the transmitted wave takes the form

E3Y(X,Z) = ~ Tneik3x”(x-~)+i~z”z (26)
n

where

( .)

1/2

k 3Xn = ~ k2 – kzf12 = (t,k,’ – kz.2)*i2. (27)
El

In order to match boundary conditions at X = O and

X = L, we substitute (8) in (4) and use the transformation

(1) to get

E2~’)(X,Z) = ei~v(x‘Os‘-z ‘in’) ~ a$~,
n

. eijn(vJ(X sin y+Z cos y)

= ~ &

n

. ei[(?. cOs y +/fn(”) sin y)x+(- ?V sin 7+ L(Y) Cos Y).zl

(28)

At the boundaries phase matching along Z yields

kzo = – ~v sin y + fl~”) cos y. (29)

Introducing (24) and (9) into (29), we have

jO(’) = c!?, tan y + kz sec y. (30)

Equation (30) provides a linear relation between the two

wave numbers FV and /?O(’) in modulated medium. The

dispersion relation ~~4) provides another relation between
- (’). Thus if we solve (14) andthe two quantities ~. and jlo

(30) simultaneously for ~, and PO(’), we obtain the entire set

of characteristic ‘wave numbers (?,,~o(’)). This is illustrated

graphically in Fig. 4. The line SS’ represents (30) which

intersects the dispersion curves at A, B, etc. The points

A, B, and C refer to modes that are guided along the positive

X direction, and the points A’, B’,” and C’ refer to modes

that are guided along the negative X direction. We denote
the set of eigenvalues that is guided along the posjti%e X

direction “by (~, +,~o +“)) and the set of eigenv:lues that is

guided along the negative X directiop by (<V_ ,~o _ “)),. Thus
the fields in’ region 2 may be written as sumrnatiops over

the modes in the form

Ezy(x,z) = ~
v

+

( (v) i[(~, + cos y+j?”+ <v) sin y)X+kzmZ]
U, ~ an-ve

n

v, ~ ~~~ ,ei[($. - Cos Y +j.-”)s in y)X+kznz]

n }

(31)
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Zz

Fig. 4. Characteristic wave numbers determined with the load line SS’.

~i[(<.- cosY+j~- (v) sin y)X+kZmZ]

1
(32)

where a$!, and Z$j, are determined from (11) and (12) for

a given (?, + ,~0 + ‘v)) and &– ,~0 – “)), rewcf:iveb’. The

modal coefficients R., Tn, Uv, and ~, are determined by

matching boundary conditions at X = O and X = L.

At X = O, the continuity of tangential E and H yields

+ ~ij$’?,(~,_ cos y + /?~_(lJ)sin y)],

(34)

At X = L, the continuity of tangential E and H yields

ei(i%+ cosY +/%+ (“) sill Y)L

+ P,i%!’’l(?.- cos Y + fin_(’) sin y)

1.ei(%-cos y+k - (“) sill Y)L (36)

21

Equations (33)-(36) can be cast in matrix form and solved

by proper truncation to yield numerical answers. In the

following two sections we consider the special cases of

modulation axis parallel and perpendicular to the boundary

surfaces of the slab.

IV. Am OF MODULATION PARALLEL TO SLAB IINTERFACES

As a special case of the preceding general formulation, we

consider the situation when y = O. We have

l,- = ‘?”+ = L! (37)

~~.(’) = fin+(v) = J/) = kz,, = kz + n :,

n = 0,+1, ~2,. ”0 (38)

and ~(v)
n—v =

~:1 ,.

The fields in the modulated region now reduce to

.E2Y(X,Z) = ~ (OVeigvx + Pye-ii”x) ~ a$~,ei~”(v)z (39)
v n

‘22(X,2) = ~ s (t7vei&”x – rye- ‘:”x) ~ u$’ ,eiB.(v)’
v cop n

Equations (33)-(36) become

Eliminating ~. and ~, from (41)-(44), we have

(=)(3=0
where

()C =(cin) C,n = a$!. *“ + 1
t,

D = (d,.)
.-v; )

d,” = a(’) k’ _ 1 ei?.L
z,

f = (“R)
()

fv=a~{ ~+1

v

~ = (J;)
()

]v=a~+~x–l
‘L

and

R = (RJ T = (T.).

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)



22 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TsCHNIQUSS, JANUARY 1977

Fig. 5. The zeroth-order and the first-order transmitted relative
intensities at normal incidence plotted as a function of u for Q = 2
and compared with results by Klein and Cook (dashed lines).

Fig. 6. The zeroth-order and the first-order transmitted relative
intensities at normal incidence plotted as a function of u for Q = 7
and compared with results by Klein and Cook (dashed lines).

:
:0.1
*

%
LY

45” 46” 47” 48” 49” 50” 51” 52”

Fig. 7. Reflection and transmission coefficients as a function of
incident angle.

Equation (45) is an infinite-dimensional matrix equation
which can be solved numerically by proper truncation.

The solution of (45) is illustrated with applications to

electrooptical modulators. We let the three permittivities

be equal .sl = Sz = 83 = e. The various modal amplitudes
are plotted as functions of a variable v defined as

which is directly proportional to the modulation index M.

The results are compared with those obtained by Klein and

Cbok [7] who neglected boundary effects and discarded

terms involving second derivatives. The parameter Q in

Figs. 5 and 6 is defined to be

(53)

which is a structure constant determined by the periodicity

and the thickness of the slab.

Figs. 5 and 6 show the comparison of our results with the

results by Klein and Cook. In Fig. 7 we show a numerical

example for reflection and transmission of a plane wave

with wavelength 2 = 0.6328 #m by a periodically mod-

ulated slab (eZ(z) = 2.32eO[l + 0.05 cos (2rcz/O.665 x

10- 6)]) with periodicity d = 0.665 pm and thickness

L = 8 pm, which corresponds to v = 3, q = 0.256, and

Q = 47. The slab is bounded with e = 1 on one side and

e = 3 on the other side, The sum of the power in all the

modes adds to unity.

V. AxIs OF MODULATION PERPENDICULAR TO

SLAB INTERFACES

In this case the z axis coincides with the X axis and the

x axis is the negative Z axis. We have y = 90°.

t,. = l,. = –k=, for all v

kz, =kz+n$cosy=kz=k sin 00
1

I
for all n.

kx. = kx = k COS 00
9

k 3xn = k3x = (s3k02 – kz2)1f2.

If we define

R=~R. (54)
n

-T=~T. (55)
n

then (21) and (22) become

El ~(X,Z) = e i(kxX + kzZ) + Rei( – kxX + kzz) (56)

‘x (ei(kxx+kzz) – ~ei( -kxx+kzz) (57’)II1~(x,z) = —
fnp~

and (26) and (27) become

J53 y(~,Z) = Teik3x(x -.L) + ikzZ (58)

H3Z(X,Z) = ~ Teik’x(x-L) + ‘kzz. (59)
Co/Jo

In view of (16) and (17), we see that all the v modes are

identical, and the modal function becomes

J,(z) = ~ a~’,ei~”(’)z = ~ a“_,eiF”-”(0)z. (60)
n n

If we let m = n – v, (60) becomes

ij,(z) = ~ amei~’’’(o)z = Jo(z), for all v. (61)
m

We define

(62)

v
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The fields in region 2 become

[
EZY(X,Z) = U ~ a.ei~”(o)x

n

1

+ P ~ ane- ‘)”(”)x eikzz
n

[
H,Z(X,Z) = U ~ ‘l% anei~”(o)x

—
1

~ ~ P:o) ~“e-ii.(ox ei)czz.

n (0/4

The boundary conditions at X = O and X = L give

23

first Bragg condition

a= A[l– &2(kod/n)2] = : (1 – p“). (78)
9

(64) The dispersion relation for incidence in the vicinity of the

first Bragg condition can be approximated as

PO = 1 – Jqz – 4ct2. (79)

Equating (78) and (79) and solving for u, we obtain

(65)
(80)

We shall consider only two dominate space harmonics for
(66) each of the two dominate modes, v = () and y = – 1, in

our solutions. Note that

l+R=

kx(l – R) =

T=

k3xT =

(O+V)~a.
n

(67)
L.lo = @-ld/z)2 - p“

(68)
. (–l+i; J1–a2

)
2-(HJ)

(81)
— ~ ~ an~n(0)e-- i~.(OJLO

n

Eliminating R and T from (66)-(69), we obtain

AU+ BV =2)

’69) We obtain

a–i(o) 9
—.

so(o) = – — = –(a + iJl – 6“).
L_lo

(82)

(70)
Retaining only two modes in the solution, we then write

l?z~ = U(a _ ~eip-’(o)z + aoei~o(o)z)

(71) + V(a _ ~e-ifi-’(”)z + aoe-i~”(o’z)

(72)
= R(z)eK~Z/O + ~(z)e - K~Z/0 (83)

where

(73) R(z) = ~aoei(~”(”) - ‘z/d))’ + pa_ ~e- ‘(~”(o) - ‘mid))= (84)

where

A=~(l+
n

B=~(l–
n

c=~(l–
n

D=x(l+
n

Solving (70) for ~ and ~,

~io)lkx)a.

~iO)/&)a.

&(o)/k3x)aneiii(0)L

fl:o)/k3x)ane-~gn(0 )L, (74) and

S(z) = ~a _ ~ei(~”(”)- ‘Zid))z + ~aoe-i(~”(o) - ‘Zld))z. (85)
we find

In view of (82), we can show that

0= 2D
AD – BC

(75) dR(z)

() ()
—+i ~~d R(z)= –i ~~ S(z) (86)

:- ‘(W(Z)= ‘( H)R(Z) ’87)

dS(z)P=– 2C–.
AD – BC

(76)

We now retain only two modes, v = O and v = – 1, in our

solutions. Consider the case when the periodicity d and the

incident wave number k is in the vicinity of the first Bragg

condition for normal incidence 60 = 0, then the longitudinal

wave number ~. takes the following complex values:

Equations (86) and (87) are the well-known coupled wave

equations induced by index coupling as obtained by

Kogelnik and Shank [9] in their study of distributed
feedback laser systems.

VI. DISCUSSIONS

~o=(l+ict)~
d

(77)

and the transverse wave number go = O for normal inci-

dence. For the incident wave satisfying exact] y the first

Bragg condition, we have p. = &2(kod/n)2 = 1. When the

incident wave is in the vicinity of the first Bragg condition,

we define a quantity 6 to measure the deviation from the

The problem of a plane wave incident upon a bounded
periodic medium has been solved with the mods 1 approach.

The solutions are illustrated for TE waves. In the case of

TM wave incidence, the wave equation inside the periodic

medium is given by

8’(’) ~ q = ()V217, + co2p&(z)17, + — —
8(Z) dz
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instead of (3). Instead of being governed by the Mathieu

equation, the TM wave is governed by the general Hill’s

equation [10]. However, for the case of MA/d << 1, we can

neglect the third term because it varies as M/2d while the

first two terms vary as l/A2. We then have an equation

identical in form to (3) and the problem can be solved by a

parallel treatment.

It is worth pointing out that the modal theory provides

the most rigorous approach to the problem of spatially

periodic media. Retaining only two modes in the equations,

we have derived the popular coupled wave equations from

the postulate of small index modulation. The modal theory

is shown to reduce to various previously arrived theories

under simplified assumptions. Calculations are presented

for cases when other theories fail to apply. We stress that

the dispersion analysis techniques as discussed in this paper

are very useful tools in studying wave behavior pertaining

to periodic media. The paper is directed toward applications

to optical components in integrated optics systems. Applica-

tions of the theory to other fields are topics worthwhile

exploring.
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Generalized Analysis of Parallel Two-Post
Mounting Structures in Waveguide

OSMAN L. EL-SAYED

Abstract—An analytical expression is obtained for tbe reactance of

parallel two-post mounting structures having unsymmetrical strip and

gap positions and different strip and gap widths. An equivalent circuit is
derived and analytical expressions for its components established giving a
physical insight into the problem of coupling between the two gaps. The
analysis is based on deriving a variational expression for the structure
reactance from the boundary conditions at the structure position. The
theoretical results are experimentally verified for a wide range of cou-
pling conditions.

Exploitation of this model for the design of wide-band varactor-tuned

negative resistance oscillators and multidiode parallel mounts in general is

discussed.

LIST OF SYMBOLS

J(r) Strip current density.

I(y) Strip current.

Zg Gap current.

V9 Voltage drop across gap.

Ein y-directed incident electric field intensity.

E,(r) y-directed scattered electric field intensity.
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E,(r)

R

n

an

m,n

kx

k,

k
Pm

k e.

A

)

;

rky

Z.

u(x)

Gap field intensity.

Reflection coefficient at mount position.

Free-space wave impedance equals Juo/co.

Kronecker delta.

Mode number.

Equals mII/a.

Equals nII/b.

Post coupling coefficient equals sin kXS(sin (kxW/2)/

(kxW/2)).

Gap coupling coefficient equals cos kYh(sin (kYg/2)/
(kYg/2)).

Free-space wavelength.

Guide wavelength (dominant mode).

Free-space wave number equals 211/L

Guide wave number equals JkX2 + kY2 – k2.

Dominant wave number equals (211/J.J = (rIO/j).

Guide characteristic impedance equals (2b/a)n(J.g/A).

Distribution function given by

(

1, for S–~<x<S+~
u(x) =

[0, elsewhere.


