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Modal Theory of Spatially Periodic Media

RUEY-SHI CHU, MEMBER, IEEE, AND JIN AU KONG, SENIOR MEMBER, IEEE

Abstract—The modal theory is developed for a slab periodic medium
bounded by different media on both sides. Dispersion analysis is carried
out for the various cases. Wave amplitudes are determined from boundary
conditions for electromagnetic field components. The results are com-
pared and reduced to the well-known theories under simplified conditions.
Analysis and calculations are aimed at applications to grating couplers,
electrooptical modulators, and distributed feedback systems in integrated
optics.

I. INTRODUCTION

N INTEGRATED OPTICS, a spatially periodic medium
is useful in modeling many different situations, whether
it be a grating coupler, a distributed feedback laser system,
or an electrooptical modulator with periodically placed
electrodes. A rigorous approach to the guided wave theory
of light diffraction by a periodic slab medium was formulated
and solved by Chu and Tamir [1]. They considered a plane
wave incident at the Bragg angle upon a periodically
modulated slab medium bounded on both sides by the
same media. The direction of periodicity is assumed to be
parallel to the boundary, and the effective modulation index
of the periodic medium is assumed to be much smaller than
unity.

Peng et al. [2] considered the problem of a slab periodic
medium bounded by two different media. The direction of
periodicity is also assumed to be parallel to the boundary
surfaces. With applications to holography, Bernstein and
Kermisch [3] treated a slab periodic medium bounded by
the same media but with the direction of periodicity making
an angle with respect to the boundary surfaces. The problem
is also studied by Kogelnik [4] by using the coupled wave
theory. ,

In this paper we study the problem of a plane wave inci-
dent, either riormal or at the Bragg angle, upon a period-
ically modulated slab medium bounded by different media
on its two sides. The direction of periodicity makes an angle
with respect to the interfaces-(Fig. 1). The solutions are
expressed in terms of matrix formulation which can be
readily calculated with a computer. We discuss dispersion
characteristics by using load line concepts, Two special
cases, with the axis of modulation parallel and perpen-
dicular to the interfaces, are treated in detail. We then use
the model to compute diffracted field components for a
large range of effective modulation indices and to compare
with other theories.
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Fig. 1. Geometrical configuration.

II. WAVES IN SPATIALLY PERIODIC MEDIA

Consider a slab of spatially periodic medium of thickness
L (Fig. 1). The direction of striation is along £ and its axis
of modulation is along 2. The boundaries of the slab are
parallel to the Z axis at X = 0 and X = L, and their
normals are parallel to X, The angle between the z axis and
the Z axis is y. The relationships between the two systems
of coordinates are

X
Z

Xcosy — Zsin y} )

Xsiny + Zcosy

The slab occupies the space 0 < X < L and possesses
permittivity of the following form:

&(z) = e,8, [1 — M cos (277: z)]

where d is the periodicity of the modulation, M is the index
of modulation, and e, is the relative permittivity in the
absence of the modulation (M = 0). For X < 0 the
medium has a relative permittivity of ¢; and for X > L
the medium has a relative permittivity of &;.

Inside the periodic medium we use the coordinates
(x,»,2) and write the wave equation as

@

[V? + 0*uee(2)]E,, = 0. 3)
A modal solution to (3) can be written as
By, (x2) = €576,(2). “@

The mode function ¢(z) satisfies the Mathieu differential
equation,

d ‘5 @) | (wjay (pv ~ 24 cos 272) S =0 (5
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with ky = o/c = 2r/2,

pv = (d/m)*(e2ko® — &%) ©®
g = 2d/2)*Me,. ‘ Q)

The mode function L(ﬁv(z) can be written as
$.(z) = T a2,eB ®)

with

B = B + n%”’, n=0,£1,42-. (9

The index v represents the particular mode v. Substitution
of (8) in (5) yields

~(V)d 2
[(Bn__) - pv] ag‘gv + q[aSl‘Qv—l

n
+al2,.,] =0 (10)

which can be written in the form of two continued fraction
relations

ar(V) _ _il B q2 | _ q2 I . (11)
a?, L’ |L:+1 |L:+2
al, q I qz I g’ I
= - o — _ — s 12
o™ L., n., L =
withr = n — v and
(D] 2
L= (ﬁ_v“_d + 2r) - Dy vy =0,£1,£2,---. (13)
7

The x-component wave numbers €, are found from p, while
D, is determined by inverting either (11) or (12) and equating
the result with the other. We obtain, for r = 0,

Lv=(gi| i q’l_...)
0 le |L2v IL3V
+(f12|_ ¢ | _ q’l_...), (14)
L—-lv —IL~2V ]L—-3v

This represents a transcendental relationship among the
quantities g, p,, and . By substituting (6) and (7) into
(14), we establish the dispersion relation for quantities k,,
Eva and ﬁO(V)'
As the modulation index M becomes zero, L,* = 0 and

(6) and (13) yield

-4 2 EO(V)d 2 2

Canr + (F 4 20) = exthodor,

v=0,x1,£2,---. (15)

Equation (15) represents a set of circles centered at
BoMdjn = 0,+2,+4,--- with equal radius e, (kod/n).
When M is not zero but small, the dispersion curves do nat
deviate very much from the case when M — 0 except near
the intersection points of any of the two circles. At these
intersection regimes the dispersion curves of the finite M
case connect together without intersecting and produce
stopbands where waves in the z direction become evanescent

[5]:
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Fig. 2. Wave number plots in £,d/z and F®d/x space.

Consider the construction of the Brillouink, — f diagram
from the wave number plots in &,d/n and B,*d/n space for
g, = 0, i.e., waves propagate in the z direction. When k, is
small such that +/ &, kod/n < 1, the Bd/n axis intersects the
dispersion curves at Ay,4,," -, which are shown in Figs.
2(a) and 3. For N g, kod/n = 1, the first stopband as shown
in Fig. 3 is constructed from Fig. 2(b) and (c). As 1 <
\/ &, kod/n < 2, we move into another passband in the
Brillouin diagram as seen from Fig. 2(d) and Fig. 3. Note
that

B =10 = B0 = (16)
and
PO =B+ -nE o, an

Thus the zeroth wave number f, of the vth mode is

identical to the —vth wave number f_© of the zeroth
mode. As a result, all the v modes are identical.

We now estimate the bandwidth of the stopband for the

case of ¢ « 1. From (6) and (7) we find

p = ex(kod/n)* = 29/M. (18)

It was shown that when f,®d/x = 1 and ¢ « 1 we have

prR1taq (19)

The plus sign corresponds to the upper branch and the
minus sign corresponds to the lower branch. Thus we have,
for the upper branch,

Ve (eodim)gs = [1 — (M/D]~Y2
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Fig. 3. Brillouin diagram constructed from Fig. 2.

and for the Iower branch,

Ve Geodm)s = [1 + (Mj2)] Y2,

Forming the difference of the two equations, we find
A = Ve, (kodlm)os — Ve (kodim)s = M]2.

Thus the bandwidth of the first stopband is proportional
to the modulation index M.

IIT. WAVE AMPLITUDES

A plane wave with the electric field in the § direction
(TE wave) is incident upon the slab at an angle 6, with
respect to the normal to the slab boundaries, i.e., the X axis.
The solution in region 1 can be written as

Ely(X;Z) —_ eikxX+ikzZ + Z Rne—ikan+ikz"Z (20)

H,(X,Z) = KX pkxX+ikzZ

wu
—_ Z @ Rne—ikx,.X+ikz,,z (21)
» U
where

kz = ksin 6y = \/; ko sin 6, 2)
ky = k cos 8, = /g, ko cos 6, 23)
kzw =kz + n 27“ cos y (24)
= (kl _ kZ"2)1/2 — (31koz _ kznZ)l/Z (25)

n=0,+1,+2,---, and k, = 2n/A = w/c. Note that the
periodicity at the boundaries is d sec y rather than 4. In
region 3 (X > L), the transmitted wave takes the form

E3y(X,Z) = Z neik3X"(X—L)+ianZ (26)
where
e 1/2
k3Xn = (—2 k2 — kznz) p— (83k02 — kzn2)1/2' (27)
&1 -

In order to match boundary conditions at X = 0 and
X = L, we substitute (8) in (4) and use the transformation
(1) to get '

E,,"(X,Z)

u:v(X cos y— Z siny) Z a(v)

. exp,,(w(x siny+Z cos y)

PITHN

n

. gilGvoosy+ Fatsin )X +(~ &, siny+ fal¥ cos )21

(28)
At the boundariee phase matching along Z yields
kg = =&, siny + B, cos y. (29)
Introducing (24) and (9) into (29), we have
Bo™ = & tany + kz secy. (30)

Equation (30) provides a linear relation between the two
wave numbers &, and B, in modulated medium. The
dispersion relation (14) provides another relation between
the two quantities &, and B,. Thus if we solve (14) and
(30) simultaneously for £, and f,™”, we obtain the entire set
of characteristic wave numbers (fv,ﬁo(”’) This is illustrated
graphically in Fig. 4. The line SS’ represents (30) which
intersects the dispersign curves at A4, B, etc. The points
A, B, and C refer to modes that are guided along the positive
X direction, and the points 4’, B’, and C’ refer to modes
that are guided along the negative X direction. We denote
the set of eigenvalues that is guided along the posijtive X
direction by (&,.,8,."") and the set of eigenvalues that is
guided along the negative X directiop by C,-.Bo—™). Thus
the fields in region 2 may be written as summations over
the modes in the form

E,(X,Z) =Y,

v

{ﬁv Y a2 ,@lLEv+ 08 74 By @) sin X +kznZ]

+ Vv Z &,(,‘Qvei[(gv‘ cos p 4 fn-Msin y)X+kz,,Z]}

(3D
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Fig.4. Characteristic wave numbers determined with the load line SS”.

s 5 )
H,(X,Z) =Y (U, Z'aS‘v)v (5v+ cosy + fB,."" sin )
22( ) A { . Y

o QI+ cosy+fus O sin )X +kzaZ]

. . Z ) I

~ O (v — COS o

+ 7, ¥ a?, (év v+ b S 7’)
wu

n

(32)

. ei[(?:v—cosv+ﬁn-<V>sinv>X+kznZJ}

where a{”, and @, are determined from (11) and (12) for
a given (&,.,00.™) and (&,_,B,-"), respectively. The
modal coefficients R,, T,, U,, and ¥, are determined by
matching boundary conditions at X = 0 and X = L.

At X = 0, the continuity of tangential E and H yields

Suo + R, = Y (U,a2, + V@) (33)

kxawo — Ry) = X, [U,a2 (&, cosy + B, siny)

+ VaP (&,_ cosy + B,_ sin p)].
(34)
At X = L, the continuity of tangential E and H yields

T,=Y [T,a? £ cos v+ Bas Msiny)L
n n—y
v
+ Iz,af,v_) vei(Ev- cos 7+ fn— W sin y)L]

k3XnTn = Z [ﬁva;‘gv(gv+ Ccos 'Y =+ Bn+(V) Sil’l V)

(35)

R ei(2v+ cos y+ fn+ (M siny)L

+ V,a,%%&,- cosy + B,- siny)

. ei(z\,_ cos 7+ fn— (M sin y)L]

(36)
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Equations (33)-(36) can be cast in matrix form and solved
by proper truncation to yield numerical answers, In the
following two sections we consider. the special cases of
modulation axis parallel and perpendicular to the boundary
surfaces of the slab.

IV. Axis oF MODULATION PARALLEL TO SLAB INTERFACES

As a special case of the preceding general formulation, we
consider the situation when y = 0. We have

~

gv— = §v+ = gv (37)
B = B = B0 = kg = ly 0 2,
n=0,£1,£2-- (38)

and a?, = a,.
The fields in the modulated region now reduce to

Ey(X,Z) = ¥ (0,e%% 4 T, e %) ¥ a2 &2 (39)

H(X,Z) = 320 (068X — Pem %) Y o) o2,

v OU
(40)
Equations (33)-(36) become
6110 -+ Rn = 2 (ﬁv + I’7\’)‘151"-2v (41)
an(5n0 - Rn) = Z zv(ﬁv - Iz’)ast‘zv (42)
T, = ¥ (0,63 + Ve ®hal,  (43)
kymT, = ¥ E(0,65F — V,e™®hal),. (44)
Eliminating U, and V, from (41)-(44), we have
A B\ (R\ _(f
(e ) (z) = () @
where
A=(a) a,=a?, (é— - 1) (46)
— — V) k3xn —iéyL
B - (bvn) bvn = dyy E + 1 e (47)
— M kxn
C= (c\':n) Cyp = Qp_y '—E_ +1 (48)
— — k3xn ié,L
D = (dvn) dvn = dyly E — 1} e (49)
: 2 _ o (ks
j_ (fv) fv = a5 \5 + 1 (50)
~ s I ()] kx
g =04 gy=aZ\F -1 (51
and

T = (T,).
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Fig. 5. The zeroth-order and the first-order transmitted relative
intensities at normal incidence plotted as a function of v for Q = 2
and compared with results by Klein and Cook (dashed lines).
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Fig. 6. The zeroth-order and the first-order transmitted relative
intensities at normal incidence plotted as a function of v for @ = 7
and compared with results by Klein and Cook (dashed lines).
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Equation (45) is an infinite-dimensional matrix equation
which can be solved numerically by proper truncation.

‘The solution of (45) is illustrated with applications to
electrooptical modulators. We let the three permittivities
be equal g; = ¢, = ¢; = & The various modal amplitudes
are plotted as functions of a variable v defined as

U=E\/;;M

7 (52)

which is directly proportional to the modulation index M.

The results are compared with those obtained by Klein and

Cbok [7] who neglected boundary effects and discarded
terms involving second derivatives. The parameter Q in

Figs. 5 and 6 is defined to be
o - 2L

Ve, d?
which is a structure constant determined by the periodicity
and the thickness of the slab.

Figs. 5 and 6 show the comparison of our results with the
results by Klein and Cook. In Fig. 7 we show a numerical
example for reflection and transmission of a plane wave
with wavelength 1 = 0.6328 um by a periodically mod-
ulated slab (g5(2) = 2.32¢[1 + 0.05 cos (2rz/0.665 x
107%]) with periodicity d = 0.665 pum and thickness
L = 8 um, which corresponds to v = 3, ¢ = 0.256, and
Q = 47. The slab is bounded with ¢ = 1 on one side and
e = 3 on the other side. The sum of the power in all the
modes adds to unity.

(53)

V. AXIs oF MODULATION PERPENDICULAR TO
SLAB INTERFACES

In this case the z axis coincides with the X axis and the
x axis is the negative Z axis. We have y = 90°,

~ ~

€v+ = 6\;— = _kz’

ﬂn+(V) =

for all v
B = B = B + 0
' d
a?, = a?,
2n .
kz, = kz+ngcosy =k, = ksin 6,

, for all a.
kys, = kx = k cos 0,

kyxn = ksx = (33ko2 - k22)1/2.

If we define
R = 2 R, (54)
T=XT, (55)
then (21) and (22) become
E y(X,Z) = ¢xX+kzD) 4 Roi(~kxX+kaZ) (56)

H,AX,Z) = _ki (elxX+kz2) _ Roi(-kxX+kz2)y (57)

Wpo
and (26) and (27) become
Ey(X,Z) = Tetksx(X—L)+ikzZ (58)
Hy,(X,Z) = k_37£ Teiksx(X-L)+ikzZ (59)

WHo

In view of (16) and (17), we see that all the v modes are
identical, and the modal function becomes

qgv(z) — Z aﬁxzveiixn(v)z — Z an_veiﬁ"_v(o)z. (60)
If we let m = n — v, (60) becomes
$.(2) = Y a7 = §o(z), forallv.  (61)
We define
=0 (62)
V=X, (63)
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The fields in region 2 become

EZY(X’Z) = [ﬁ Z aneii"m)x

i % Z ane_iﬁn(mx] o7z (64)
cwfO
H,,(X,Z) = [ Z B, a,eP ¥
n WU
S BO T
. 74 Z ﬁn a,,e"”"( )X] eu“czz‘ (65)
n U
The boundary conditions at X = 0 and X = L give
1+R=(l7+ V)Za,, (66)
ky(1 — R = (0 - ) 2 B.@a, (67)
T =UY a,e#F + X a e~ L (68)
kyxT = U Y a, B, (0eifnL
. Ya B e~ 1L (69)
Eliminating R and T from (66)-(69), we obtain
AU + BV =2
CO + DV =0 (70)
where
4 =Y+ B%%ya, (71)
B = Z (1 - ﬁn(O)/kX)an (72)
C =Y = B ks)a,e " (73)
D =Y (1 + B, ksy)a,e P, (74)
Solving (70) for U and ¥, we find
U= _ 2 (75)
AD — BC
po__ 2 (76)
AD — BC
We now retain only two modes, v = Qand v = —1, in our

solutions. Consider the case when the periodicity d and the
incident wave number k is in the vicinity of the first Bragg
condition for normal incidence 6, = 0, then the longitudinal
wave number f, takes the following complex values:

Bo=(1 + in) = a7
d

and the transverse wave number &, = 0 for normal inci-

dence. For the incident wave satisfying exactly the first

Bragg condition, we have p, = &,(kod/n)* = 1. When the

incident wave is in the vicinity of the first Bragg condition,

we define a quantity J to measure the deviation from the

23

first Bragg condition

=il - ekedmt] =2 -0 ®
q q

The dispersion relation for incidence in the vicinity of the
first Bragg condition can be approximated as

Po 1 — g* — 4o, (79)
Equating (78) and (79) and solving for «, we obtain
=11 -% (80)
‘ 2
We shall consider only two dominate space harmonics for
each of the two dominate modes, v.= 0 and v = -1, in
our solutions, Note that
L—IO = (ﬁ—ﬂi/n)z = Po
—_— N2
= (—1 + i%x/l - 5?) — (1 — 89)
= q(6 — ix/1 = 82). (81)
We obtain
© R
a_y 9 _ _ ; Y
o =TT G+ iVl — 05, (82)

Retaining only two modes in the solution, we then write
E,y = U(a_,e

+ V(a_,e

— R(z)ei(nz/d) + S(Z)e—i(w:z/d)

iff - 1(0) iffo(®

zﬂ_l z } 1, ztﬂo z) |

—if (O —iBo(0)
if-10z age ifo z)

(83)
where

R(z) = Uaged@o =@z 4 Py o=iBo@-(/d)z (34)

and

S(z) = ﬁa_lei(l?ow’-(n/d))z + Vaoe_i(’%m_("/d»z.

(85)
In view of (82), we can show that

R R

(g5 o

dz 2d
Equations (86) and (87) are the well-known coupled wave
equations induced by index coupling as obtained by
Kogelnik and Shank [9] in their study of distributed
feedback laser systems.

(87)

VI. DiIscUSSIONS

The problem of a plane wave incident upon a bounded
periodic medium has been solved with the modal approach.
The solutions are illustrated for TE waves. In the case of
TM wave incidence, the wave equation inside the periodic
medium is given by '

e(z)aH _

V2H + o ezH +
“1el2) o) oz 7
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instead of (3). Instead of being governed by the Mathieu
equation, the TM wave is governed by the general Hill’s
equation [10]. However, for the case of M1/d « 1, we can
neglect the third term because it varies as M/Ad while the
first two terms vary as 1/A%2. We then have an equation
identical in form to (3) and the problem can be solved by a
parallel treatment.

It is worth pointing out that the modal theory provides
the most rigorous approach to the problem of spatially
periodic media. Retaining only two modes in the equations,
we have derived the popular coupled wave equations from
the postulate of small index modulation. The modal theory
is shown to reduce to various previously arrived theories
under simplified  assumptions. Calculations are presented
for cases when other theories fail to apply. We stress that
the dispersion analysis techniques as discussed in this paper
are very useful tools in studying wave behavior pertaining
to periodic media. The paper is directed toward applications
to optical components in integrated optics systems. Applica-
tions of the theory to other fields are topics worthwhile
exploring.
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Generalized Analysis of Parallel Two-Post
Mounting Structures in Waveguide

OSMAN L. EL-SAYED

Abstract—An analytical expression is obtained for the reactance of
parallel two-post mounting structures having unsymmetrical strip and
gap positions and different strip and gap widths. An equivalent circuit is
derived and analytical expressions for its components established giving a
physical insight into the problem of coupling between the two gaps. The
analysis is based on deriving a variational expression for the structure
reactance from the boundary conditions at the structure position. The
theoretical results are experimentally verified for a wide range of cou-
pling conditions.

Exploitation of this model for the design of wide-band varactor-tuned
negative resistance oscillators and multidiode parallel mounts in general is
discussed.

LisT OF SYMBOLS

J(r)  Strip current density.
I(y)  Strip current.

1, Gap current.

v, Voltage drop across gap.

E,, y-directed incident electric field intensity.
E/(r) y-directed scattered electric field intensity.
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E/(r) Gap field intensity.

R Reflection coefficient at mount position.

n Free-space wave impedance equals \/ Up/eg-

S, Kronecker delta.

m,n Mode number.

k, Equals mll/a.

k, Equals »I1/b.

k. Post coupling coefﬁment equals sin k£, S(sin (k, W/2)/
(k. W[2)).

k,. Gap coupling coefficient equals cos kh(sin (k,g/2)/
(k,9/2)).

A Free-space wavelength.

A Guide wavelength (dominant mode).

k Free-space wave number equals 2IT/4.

I,, Guide wave number equals Vk,2 + k2 — K%

kK’ Dominant wave number equals 2IT/4)) = (I'14//)-

Z, Guide characteristic impedance equals (2b/a)n(4,/).
Distribution function given by
1, forS—E<x<S+Z
u(x) = 2 2
0, elsewhere.



